Studies of the Zero-field Splitting for Mn²⁺ in 6H-RbMgF₃ Crystal

Wen-Chen Zheng^{a,c}, Yang Mei^a, Xiao-Xuan Wu^{a,b,c}, and Qing Zhou^a

- ^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China.
- ^b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China.
- ^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China.

Reprint requests to W.-C. Z.; E-mail: zhengwc1@163.com

Z. Naturforsch. **59a**, 961 – 963 (2004); received August 30,2004

By using the spin-orbit coupling mechanism and the empirical superposition model, the zero-field splittings D of Mn^{2+} ions on both Mg^{2+} sites in hexagonal 6H-RbMgF₃ crystal are calculated from the structural data of both Mg^{2+} sites. The calculated results of both methods confirm the suggestion that Mn^{2+} in 6H-RbMgF₃ occupies the Mg^{2+} (I) site (which has D_{3d} site symmetry) and the zero-field splitting D of 6H-RbMgF₃: Mn^{2+} is explained reasonably.

Key words: Electron Paramagnetic Resonance; Crystal-Field Theory; Superposition Model; Mn²⁺; 6H-RbMgF₃.

1. Introduction

Fluoroperovskites ABF3 can be used as laser crystals when doped with transition-metal and rare earth ions, and so they have attracted much attention [1-6]. The structure of a fluoroperovskite depends upon the tolerance factor $t = (r_A + r_F)/[\sqrt{2}(r_B + r_F)]$, where r is an ionic radius [7]. Fluoroperovskite RbMgF3, since the tolerance factor $t \approx 1.01 > 1$, has a 6H-type hexagonal structure in which there are two crystallographically distinct types of Mg²⁺ ions [7,8]. Both Mg²⁺ ions are surrounded by octahedra of F⁻ ions. One of them, Mg^{2+} (I), exhibits D_{3d} site symmetry, while the other, Mg^{2+} (II), occupies a site having C_{3V} symmetry [8]. When a 3dn ion enters the 6H-RbMgF3 crystal, it may occupy the Mg²⁺ (I) or Mg²⁺ (II) sites. The EPR spectra of Mn²⁺ ions in 6H-RbMgF₃ crystal were reported [9]. Since the spectra can be described by a spin Hamiltonian containing a zero-field splitting $D \approx 91.6 \cdot 10^{-4} \text{ cm}^{-1}$, Mn^{2+} occupies only one Mg^{2+} site. Dance and Kerkouri [9] suggested that Mn²⁺ occupies the Mg²⁺ (I) site in 6H-RbMgF₃ crystal. In order to confirm the suggestion and to explain the zero-field splitting of 6H-RbMgF₃: Mn²⁺, in this paper, we calculated the zero-field splittings D based on the structural data related to both Mg²⁺ sites in 6H-RbMgF₃ crystal from the microscopic spin-orbit coupling mechanism and the empirical superposition model.

2. Calculation

The zero-field splitting of the 6 S-state (or $3d^5$) ions in the crystal can be calculated by the microscopic mechanisms [10,11] and the empirical superposition model [12]. Because of the lack of orbital angular momentum in the 6 S ground state, the microscopic mechanisms of zero-field splitting for $3d^5$ ions in crystals are complex, and there are many mechanisms which contribute to the zero-field splitting [10,11,13]. Among these mechanisms, the spin-orbit coupling mechanism is regarded as the dominant one [10,11,13,14]. According to this mechanism, the high-order (fourth- and sixth-order) perturbation formula of zero-field splitting D for $3d^5$ ions in trigonal symmetry can be expressed as [14]

$$\begin{split} D &\approx D^{(4)} + D^{(6)}, \\ D^{(4)} &\approx 3\zeta^2 (-B_{20}^2 - 21\zeta B_{20})/(70P^2D') \\ &+ \zeta^2 (-10B_{40}^2 + 7B_{43}^2)/(126P^2G) \\ D^{(6)} &\approx -B_{20}^2\zeta^2 [175B_{43}^2 + (24B_{20}^2 - 25B_{40})^2] \\ & /(360150P^2D'^2F) - 9\zeta^2B_{40}^2/(2450P^3D'^2) \\ &- B_{20}^2\zeta^2 (11B_{43}^2 + 10B_{40}^2)/(735P^3D'G) \\ &+ \zeta^2 [7B_{20}B_{43}^2 (25B_{40} - 68B_{20}) \\ &+ 10B_{20}B_{40}(B_{20} + B_{40})(24B_{20} - 25B_{40})] \\ /(36015P^2D'FG) \end{split}$$

 $0932-0784 \ / \ 04 \ / \ 1200-0961 \ \$ \ 06.00 \ \textcircled{o} \ 2004 \ \ Verlag \ der \ Zeitschrift \ für \ Naturforschung, \ Tübingen \cdot \ http://znaturforsch.com$

$$-5\zeta^{2}(B_{40}^{2} - 7B_{43}^{2}/10)(29B_{43}^{2} + 10B_{40}^{2})$$

$$/(3969P^{3}G^{2})$$

$$+\zeta^{2}[-5(B_{40}^{2} - 7B_{43}^{2}/10)(15B_{40}^{2} - 14B_{43}^{2})$$

$$+7B_{20}B_{43}^{2}(57B_{20} - 120B_{40})$$

$$-75B_{20}B_{40}^{2}(B_{20} + 2B_{40})]$$

$$/(21609P^{2}G^{2}F), \tag{1}$$

where ζ is the spin-orbit coupling parameter. B_{kl} are the trigonal field parameters. P, D', G and F are the zero-order energy separations. They are

$$P = 7B + 7C, D' = 17B + 5C,$$

 $G = 10B + 5C, F = 22B + 7C,$
(2)

where *B* and *C* are the Racah parameters.

The empirical superposition model can be used for the analyses of the crystal-field parameters and zerofield splittings [12]. From the superposition model, related to the crystal-field parameters, the trigonal field parameters B_{kl} can be written as

$$\begin{split} B_{20} &= 3A_2(R_0) \sum_{i=1}^2 (2\cos^2\theta_i - 1)(R_0/R_i)^{t_2}, \\ B_{40} &= 3A_4(R_0) \sum_{i=1}^2 (35\cos^4\theta_i - 30\cos^2\theta + 3)(R_0/R_i)^{t_4}, \end{split}$$

$$B_{43} = -\sqrt{35}A_4(R_0)\sum_{i=1}^2 \sin^3\theta\cos\theta_i (R_0/R_i)^{t_2},$$
 (3)

where R_i are the impurity-ligand distances and θ_i are the angles between the R_i and C_3 axis. For the host 6H-RbMgF₃ crystal, the structural parameters R_i^H and θ_i , related to both Mg²⁺ sites, were determined [9] and are shown in Table 1. Since the ionic radius r_i $(\approx 0.97 \text{ Å } [15])$ of the impurity Mn²⁺ differs from the radius r_h ($\approx 0.86 \text{ Å}$ [15]) of the replaced Mg²⁺ ion, the impurity-ligand distances R_i in 6H-RbMgF₃: Mn²⁺ should be unlike the corresponding distances R_i^H in the host crystal. We can estimate reasonably the distances R_i from the empirical formula [16, 17] $R_i = R_i^H + (r_i - r_h)/2$. Thus, the impurity-ligand distances R_i for Mn²⁺ on both Mg²⁺ sites can be obtained and are also shown in Table 1. In (3), t_2 and t_4 are the power-law exponents. We take $t_2 \approx 3$ and $t_4 \approx 5$ because of the ionic nature of the bonds [12, 18]. $\overline{A_2}(R_0)$ and $\overline{A_4}(R_0)$ are the intrinsic parameters with the reference distance $R_0 \approx [R_1 + R_2]/2$. For $3d^n$ ions on

Table 1. The structural data of 6H-RbMgF₃: Mn²⁺ crystal. ^a Ref. [8].

	$R_1^H (\mathring{A})^a$	$R_1^H (\mathring{A})^a$	<i>R</i> ₁ (Å)	R_2 (Å)	$\theta_1 (\text{deg.})^a$	$\theta_2 (\text{deg.})^a$
Site I	2.034	2.034	2.089	2.089	56.16(21)	56.16(21)
Site II	2.027	1.987	2.082	2.042	48.15(14)	57.65(14)

Table 2. The zero-field splitting D of 6H-RbMgF₃: $\mathrm{Mn^{2+}}$ crystal.

	Cal.a	Cal.b	Cal.c	Cal.d	Expt. [9]
$D (10^{-4} \text{ cm}^{-1})$	85(10)	74(17)	-93(10)	-94(14)	91.6

 a Calculation using the structural data for Mn^{2+} on the Mg^{2+} (I) site from the microscopic spin-orbit coupling mechanism. b Calculation using the structural data for Mn^{2+} on the Mg^{2+} (I) site from the superposition model. c Calculation using the structural data for Mn^{2+} on the Mg^{2+} (II) from the microscopic spin-orbit coupling mechanism. d Calculation using the structural data for Mn^{2+} on the Mg^{2+} (II) site from the superposition model.

octahedral sites, $\overline{A_4}(R_0) = 3Dq/4$ [12, 18], where Dq is the cubic field parameter. The ratio $\overline{A_2}(R_0)/\overline{A_4}(R_0)$ is in the range of $9 \sim 12$ for $3d^n$ ions in crystals [18 – 20], and we take the average value, i.e., $\overline{A_2}(R_0)/\overline{A_4}(R_0) \approx 10.5$. The parameters B, C and Dq can be obtained from the optical spectra of the studied system. No optical spectra data of the studied 6H-RbMgF₃: Mn²⁺ crystal have been reported. So we estimate them from the optical spectra of similar systems. Since KMnF₃ and 6H-RbMgF₃ crystals have the same (MnF₆)⁴⁻ cluster and a similar Mn²⁺-F⁻ distance R (for KMnF₃, $R \approx 2.095$ Å [21]), the optical spectra of both crystals may be similar. So, we apply the optical spectra of KMnF₃ [21] here:

$$B \approx 829 \text{ cm}^{-1}, C \approx 3130 \text{ cm}^{-1}, Dq \approx 786 \text{ cm}^{-1}.$$
 (4)

The spin-orbit coupling parameter ζ in crystals can be estimated by the formula [14] $\zeta \approx N^2 \zeta_0$, where $N \approx \sqrt[4]{B/B_0}$, B_0 is the corresponding value in the free state) is the average covalence reduction factor and ζ_0 is the spin-orbit coupling parameter of the free 3d n ion. For the free Mn $^{2+}$ ion [22], we have $B_0 \approx 873~{\rm cm}^{-1}$ and $\zeta_0 = 347~{\rm cm}^{-1}$, thus we obtain $\zeta = 330~{\rm cm}^{-1}$.

Substituting all these parameters into the above formulas, the zero-field splittings D for Mn^{2+} on both Mg^{2+} sites are calculated. The results are shown in Table 2.

The empirical superposition model has also been used to explain successfully the zero-field splittings for S-state ions in crystals. From the model related to zero-field splitting [12, 23], for 3d⁵ ions in trigonal symmetry we have [12]

$$D = 3/2 \sum_{i=1}^{2} \overline{b_2}(R_0) (R_0/R_i)^{t_2} (3\cos^2\theta_i - 1), \qquad (5)$$

where $\overline{b_2}(R_0)$ is the intrinsic zero-field splitting parameter. The reference distance R_0 is taken as a typical bond distance in compounds of the paramagnetic ion [23]. $\underline{t_2}$ is the power-law exponent. For $(MnF_6)^{4-}$ clusters, $\overline{b_2}(R_0) \approx -0.034(3)$ cm⁻¹ with $R_0 \approx 2.1$ Å and $t_2 \approx 7$ are obtained by combining the crystallographic data with the EPR data for Mn^{2+} ions in many crystals [23]. Applying these parameters and the structural data given in Table 1 in (5), the zero-field splittings D for Mn^{2+} on the two Mg^{2+} sites in 6H-RbMgF₃ crystals are calculated. The results are also shown in Table 2.

3. Discussion

From Table 2 one finds that for Mn²⁺ on the sites Mg²⁺ (I) and (II) in 6H-RbMgF₃ crystal, the calculated

- [1] K. R. German, L. Darr, and W. Kunzel, Opt. Lett. 11, 12 (1986).
- [2] A. V. Chadwick, S. R. Daris, F. F. De Lima, M. E. G. Valevio, and S. L. Baldoch, J. Phys.: Condens. Matter 8, 10679 (1996).
- [3] O. Pilla, P. T. C. Freire, and V. Lemos, Phys. Rev. B 52, 177 (1995).
- [4] F. Rodriguez, H. Riesen, and H. U. Gudel, J. Lumin. 50, 101 (1991).
- [5] M. Yamaga, M. Honda, N. Kawamata, T. Fujita, K. Shimamura, and T. Fukuda, J. Phys.: Condens. Matter 13, 3461 (2001).
- [6] M. Yamaga, M. Honda, K. Shimamura, T. Fukuda, and T. Yosida, J. Phys.: Condens. Matter 12, 5917 (2000).
- [7] J. M. Dance, N. Kerkouri, and A. Tressaud, Mat. Res. Bull. 14, 869 (1979).
- [8] N. Kerkouri and J. M. Dance, Mat. Res. Bull. 19, 751 (1984).
- [9] J. M. Dance and N. Kerkouri, C.R. Acad. Sci. C 289, 425 (1979).
- [10] W. L. Yu and M. G. Zhao, Phys. Rev. B 37, 9254 (1988).
- [11] W. C. Zheng, Phys. Rev. B 42, 826 (1990).

zero-field splittings D from the microscopic spin-orbit coupling mechanism and the empirical superposition model are close to each other. So, the two methods are effective for studies of the zero-field splittings of $3d^5$ ions in crystals.

Within the range of error [note: the calculated errors are due to the errors of the angles θ_i and the error of $\overline{b_2}(R_0)$], by both methods the calculated D-values for $\mathrm{Mn^{2+}}$ on the $\mathrm{Mg^{2+}}$ (I) site in 6H-RbMgF3 agree with the observed value. The signs of calculated D-values for $\mathrm{Mn^{2+}}$ on the $\mathrm{Mg^{2+}}$ (II) site from both methods are opposite to that of the observed value. So, the suggestion for $\mathrm{Mn^{2+}}$ on site (I) in 6H-RbMgF3 crystal, given in [9], is validated, and the zero-field splitting D for 6H-RbMgF3: $\mathrm{Mn^{2+}}$ is explained reasonably.

- [12] D. J. Newman and N. Betty, Rep. Prog. Phys. 52, 699 (1989).
- [13] V. K. Tain and G. Lehmann, Phys. Status Solidi B 159, 495 (1990).
- [14] W. L. Yu, M. G. Zhao, and Z. Q. Lin, J. Phys. C 18, 1857 (1985).
- [15] R. D. Shannon, Acta. Cryst. A 32, 751 (1976).
- [16] W. C. Zheng, Physica B 215, 255 (1995).
- [17] Z. M. Li and W. L. Shuen, J. Phys. Chem. Solids 57, 1073 (1996).
- [18] W. C. Zheng and S. Y. Wu, Z. Naturforsch. 55a, 539 (2000).
- [19] A. Edgar, J. Phys. C 9, 4304 (1976).
- [20] D. J. Newman, D. C. Pryce, and W. A. Runciman, Amer. Mineral. 63, 1278 (1978).
- [21] F. Rodriguez and M. Moreno, J. Chem. Phys. 84, 692 (1986).
- [22] J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964.
- [23] M. Heming and G. Lehmann, in J. A. Weil (Ed.), Electronic Magnetic Resonance of the Solid State, The Canadian Chemistry Society, Ottawa 1987, p. 163.